		Algorithm		
000	00000	000000000	0000000	000

Hyper-pool: pooling private trips into high-occupancy transit-like attractive shared rides

Rafał Kucharski Jagielonian University, Poland Oded Cats TU Delft, Netherlands

Concept				
000	00000	000000000	0000000	000

Concept

Concept		Algorithm		
000	00000	000000000	0000000	000
Hyper-pool				

Hyper-pool

an analytical, offline, utility-driven

ride-pooling algorithm to aggregate individual trip requests into attractive shared rides of high-occupancy

Algorithm

we depart from our ride-pooling ExMAS algorithm where single rides are pooled into attractive door-to-door rides

we add two novel demand-side algorithms for further aggregating individual demand towards more compact pooling.

First, we generate stop-to-stop rides, with a single pick up and drop off points optimal for all the travellers.

Second, we bundle such rides again, resulting with hyper-pooled rides compact enough to resemble public transport operations.

Concept		Algorithm		
000	00000	000000000	0000000	000
Hyper-pool main idea				

Hyper-pool

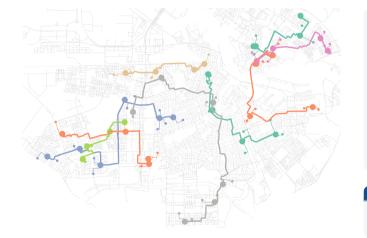
an analytical, offline, utility-driven

ride-pooling algorithm to aggregate individual trip requests into attractive shared rides of high-occupancy

Algorithm

we depart from our ride-pooling ExMAS algorithm where single rides are pooled into attractive door-to-door rides

we add two novel demand-side algorithms for further aggregating individual demand towards more compact pooling.


First, we generate stop-to-stop rides, with a single pick up and drop off points optimal for all the travellers.

Second, we bundle such rides again, resulting with hyper-pooled rides compact enough to resemble public transport operations.

Concept		Algorithm		
000	00000	000000000	0000000	000
Hyper-poc	oled trips			

Amsterdam case study results

Ten hyper-pooled rides in Amsterdam.

The degree reaches 12 (travellers)

rides are strictly attractive for all the co-travellers.

We can see direct short rides (e.g. brown in the central part)

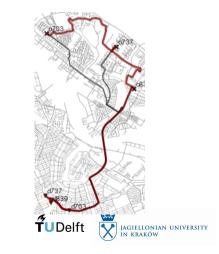
as well as rides spanning through the whole city (grey).

The occupancy typically exceeds 4 and vehicle hours are reduced 5x when compared to private rides.

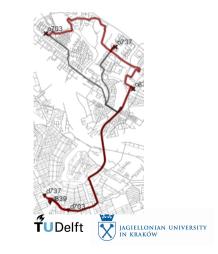
search space

we manage to identify rides composed of up to 14 travellers, which would require handling search space of the enormous 10^{57} size impossible to search exhaustively

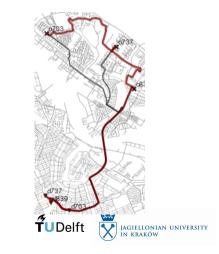
гv


Problem	Algorithm	
00000		

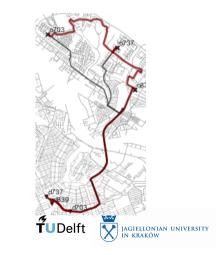
Problem


	Problem	Algorithm		
000	00000	000000000	0000000	000
Problem				
Ride-pooling				

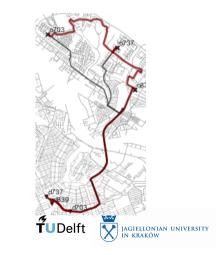
- two or more travellers can be matched into a shared a ride and travel in the same ride-hailing vehicle.
- vehicle picks them up from origins and drops-them off at their destinations,
- both pickup and travel times deviate from the desired or minimal ones,
- this inconvenience needs to be compensated with a lower fare compared to an individual ride,
- service provider can now:
 - better utilise its capacity
 - charge several users for a ride
 - while paying a single driver commission.


	Problem	Algorithm		
000	00000	000000000	0000000	000
Problem				
Ride-pooling				

- two or more travellers can be matched into a shared a ride and travel in the same ride-hailing vehicle.
- vehicle picks them up from origins and drops-them off at their destinations,
- both pickup and travel times deviate from the desired or minimal ones,
- this inconvenience needs to be compensated with a lower fare compared to an individual ride,
- service provider can now:
 - better utilise its capacity
 - charge several users for a ride
 - while paying a single driver commission.


	Problem	Algorithm		
000	00000	000000000	00000000	000
Problem				
Ride-pooling				

- two or more travellers can be matched into a shared a ride and travel in the same ride-hailing vehicle.
- vehicle picks them up from origins and drops-them off at their destinations,
- both pickup and travel times deviate from the desired or minimal ones,
- this inconvenience needs to be compensated with a lower fare compared to an individual ride,
- service provider can now:
 - better utilise its capacity
 - charge several users for a ride
 - while paying a single driver commission.


	Problem	Algorithm		
000	00000	000000000	0000000	000
Problem				
Ride-pooling				

- two or more travellers can be matched into a shared a ride and travel in the same ride-hailing vehicle.
- vehicle picks them up from origins and drops-them off at their destinations,
- both pickup and travel times deviate from the desired or minimal ones,
- this inconvenience needs to be compensated with a lower fare compared to an individual ride,
- service provider can now:
 - better utilise its capacity
 - charge several users for a ride
 - while paying a single driver commission.

	Problem	Algorithm		
000	00000	000000000	0000000	000
Problem				
Ride-pooling				

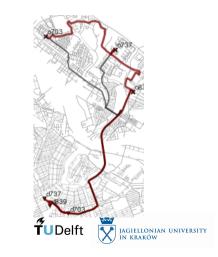
- two or more travellers can be matched into a shared a ride and travel in the same ride-hailing vehicle.
- vehicle picks them up from origins and drops-them off at their destinations,
- both pickup and travel times deviate from the desired or minimal ones,
- this inconvenience needs to be compensated with a lower fare compared to an individual ride,
- service provider can now:
 - better utilise its capacity
 - charge several users for a ride
 - while paying a single driver commission.

	Problem	Algorithm		
000	00000	000000000	00000000	000
Problem				
Ride-pooling				

Ride-pooling in practice

- Mainly door-to-door
- Unsustainable (benefits do not justify discounts)
- Low occupancy
- Critical Ma(a)ss

	Problem	Algorithm		
000	00000	000000000	0000000	000
Problem				
Ride-pooling				


Ride-pooling algorithms

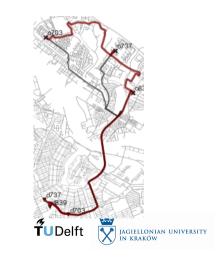
- typically real-time
- Operations driven
- Ileet-oriented
- flat, fixed constrains (time-windows)
- captive travelers

Limitations

- 🚺 door-to-dooi
- One-kind of service
- @ no compensation: longer detour ightarrow greater discount

The full potential of ride-pooling waits to be unleashed- both in theory and in practice

	Problem	Algorithm		
000	00000	000000000	0000000	000
Problem				
Ride-pooling				


Ride-pooling algorithms

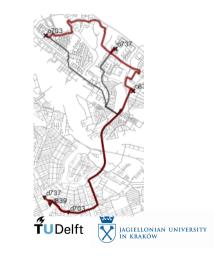
- typically real-time
- Operations driven
- Ileet-oriented
- flat, fixed constrains (time-windows)
- captive travelers

Limitations

- door-to-door
- One-kind of service
- \bigcirc no compensation: longer detour \rightarrow greater discount

The full potential of ride-pooling waits to be unleashed- both in theory and in practice

	Problem	Algorithm		
000	00000	000000000	0000000	000
Problem				
Ride-pooling				


Ride-pooling algorithms

- typically real-time
- Operations driven
- Ileet-oriented
- flat, fixed constrains (time-windows)
- captive travelers

Limitations

- door-to-door
- One-kind of service
- \bigcirc no compensation: longer detour \rightarrow greater discount

The full potential of ride-pooling waits to be unleashed- both in theory and in practice

	Problem	Algorithm	
	00000		
Another problem Transit Network Design Prob			

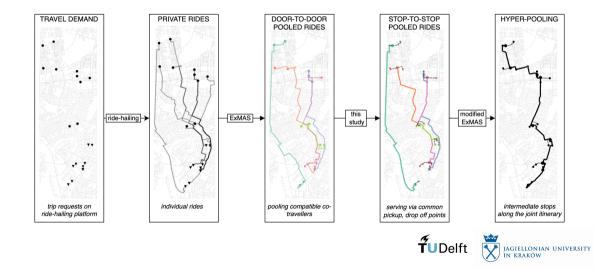
TND	P
deter	rmining optimal:
0	stop-locations
2	lines (stop sequences)
3	timetable (headways and departures)
s:	

Hyper-pool can be seen as a bottom-up, demand driven approach for TNDF

	Problem	Algorithm	
	00000		
Another problem Transit Network Design Prob			

TND	P
deter	mining optimal:
1	stop-locations
2	lines (stop sequences)
3	timetable (headways and departures)
is:	
0	NP-hard
2	unsolvable - open-problem
3	search-space explosion

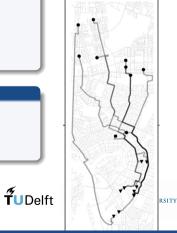
Hyper-pool can be seen as a bottom-up, demand driven approach for TNDP



		Algorithm		
000	00000	••••••	0000000	000

Algorithm

		Algorithm		
000	00000	00000000	0000000	000
Four leve	ls of pooling			


		Algorithm		
000	00000	000000000	00000000	000
Four levels	s of pooling			

door-to-door	
no detour (direct)	
no delay	
no discount	

utility

$$U_p = \beta^t t_p - \lambda_p l + \varepsilon$$

composed of a direct travel time (t_p) weighted by β^t (the value-of-time behavioural parameter) and a distance-based fare $(\lambda_p l)$

PRIVATE RIDES

		Algorithm		
000	00000	00000000	0000000	000
Four levels 2. Door-to-door po				

door-to-door

detour and delay

discount

utility

$$U_{d2d} = \beta^t (\beta^t_{d2d} t_{d2d} + \beta^d d_{d2d}) - \lambda_{d2d} l + \epsilon$$

fare is discounted $(\lambda_{d2d} < \lambda_p)$, travel time is longer $(t_{d2d} \ge t_p)$ and delayed $(d_{d2d} > 0)$ discomfort (expressed as $\beta_{d2d}^t > 1$ to represent the so-called willingness-to-share)

ExMAS

Kucharski R., Cats. O 2020. Exact matching of attractive shared rides (ExMAS) for system-wide strategic evaluations, Transportation Research Part B 139 (2020) 285-310 https://doi.org/10.1016/j.trb.2020.06.006 https://github.com/RafalKucharskiPK/ExMAS

ft

		Algorithm		
000	00000	000000000	0000000	000
Four levels	s of pooling			

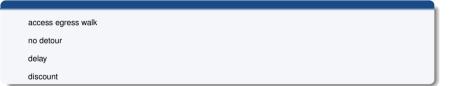
door-to-door detour and delay

discount

utility

$$U_{d2d} = \beta^t \left(\beta_{d2d}^t t_{d2d} + \beta^d d_{d2d}\right) - \lambda_{d2d}l + \epsilon$$

fare is discounted $(\lambda_{d2d} < \lambda_p)$, travel time is longer $(t_{d2d} \ge t_p)$ and delayed $(d_{d2d} > 0)$ discomfort (expressed as $\beta_{d2d}^t > 1$ to represent the so-called willingness-to-share)


ExMAS

Kucharski R., Cats. O 2020. Exact matching of attractive shared rides (ExMAS) for system-wide strategic evaluations, Transportation Research Part B 139 (2020) 285-310 https://doi.org/10.1016/j.trb.2020.06.006 https://github.com/RafalKucharskiPK/ExMAS

ft.

		Algorithm		
000	00000	000000000	0000000	000
Four levels 3. Stop-to-stop rid	s of pooling			

utility

$$U_{s2s} = \beta^t (\beta^t_{s2s} t_{s2s} + \beta^d d_{s2s} + \beta^w w_{s2s}) - \lambda_{s2s} l + \varepsilon$$

walking discomfort $(\beta^w > 1)$ and walk time $w_{s2s,i}$)., no additional in-vehicle discomfort $(\beta_{s2s}^t \approx \beta_{d2d}^t)$ since the ride is anyhow poole now the travel time t_{s2s} is likely to be shorter but the discount needs to be high to compensate walking $\lambda_{s2s}l$

TUDelft

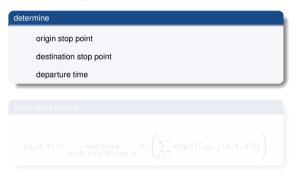
STOP-TO-STOP POOLED RIDES

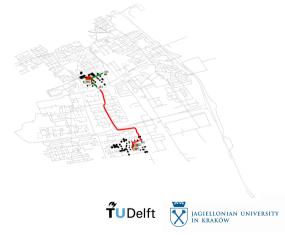
		Algorithm		
000	00000	000000000	0000000	000
Four levels	s of pooling			

access egress walk	
no detour	
delay	
discount	

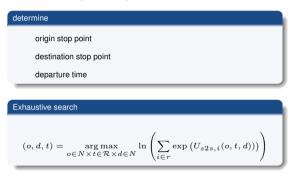
utility

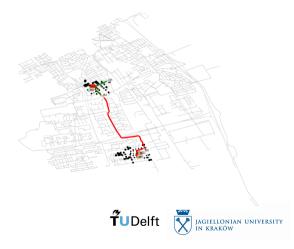
$$U_{s2s} = \beta^t (\beta_{s2s}^t t_{s2s} + \beta^d d_{s2s} + \beta^w w_{s2s}) - \lambda_{s2s} l + \varepsilon$$


walking discomfort $(\beta^w > 1)$ and walk time $w_{s2s,i}$)., no additional in-vehicle discomfort $(\beta^t_{s2s} \approx \beta^t_{d2d})$ since the ride is anyhow pooled, now the travel time t_{s2s} is likely to be shorter but the discount needs to be high to compensate walking $\lambda_{s2s}l$



		Algorithm		
000	00000	000000000	0000000	000
Stop-to-st				
problem: determi	ning stops and departure			

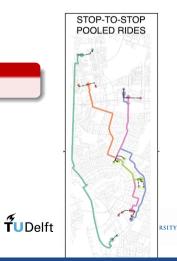

for each stop-to-stop ride:



		Algorithm		
000	00000	000000000	0000000	000
Stop-to-st	op rides ning stops and departure			

for each stop-to-stop ride:

		Algorithm		
000	00000	0000000000	0000000	000
Stop-to-sto	op rides			


they have the same structure, like private rides

(o, d, t)

so we can pool them again

Breakthough

the key element of our model

	Problem	Algorithm	Results	
000	00000	0000000000	0000000	000
Four levels 4. Hyper-pooled ric				

idea	HYPER-POOLING
pool stop-to-stop pooled rides again with ExMAS	
Hyper-pooling	- Ly,
access egress walk	
detour	SI TERE
multi-stops	
big discount	

$$U_{\mathbb{h}}=eta^{t}(eta^{t}_{\mathbb{h}}t_{\mathbb{h}}+eta^{d}d_{\mathbb{h}})-\lambda_{\mathbb{h}}l+arepsilon$$

Similarly to the original ExMAS, the fare is reduced again $(\lambda_{b1} < \lambda_{s2s})$. Now we assume the discomfort due to pooling remains $(\beta_{b1}^* > \beta_{s2s}^*)$, but is significantly lower than in the original ExMAS travellers are anyhow pooling). RSITY

ft

	Problem	Algorithm	Results	
000	00000	0000000000	0000000	000
Four levels 4. Hyper-pooled ric				

idea	HYPER-POOLING
pool stop-to-stop pooled rides again with ExMAS	
Hyper-pooling	In the
access egress walk	
detour	
multi-stops	
big discount	

$$U_{\mathbb{h}} = \beta^{t} (\beta^{t}_{\mathbb{h}} t_{\mathbb{h}} + \beta^{d} d_{\mathbb{h}}) - \lambda_{\mathbb{h}} l + \varepsilon$$
⁽²⁾

Similarly to the original ExMAS, the fare is reduced again $(\lambda_{lh} < \lambda_{s2s})$. Now we assume the discomfort due to pooling remains $(\beta_{lh}^t > \beta_{s2s}^t)$, but is significantly lower than in the original ExMAS (travellers are anyhow pooling).

RSITY

ft

		Algorithm		
000	00000	0000000000	0000000	000
Attractive poling				

utility-driven approach

At each level of pooling we make sure that utility of pooled rides is greater that at the previous level for all pooling travellers

door-to-door pooling only if more attractive than private rides

$$U_{d2d,i} \ge U_{p,i} \forall i \in \mathbf{Q}_r \forall r \in r_{d2d},$$

stop-to-stop pooling only if more attractive than door-to-door pooling

$$U_{s2s,i} \ge U_{d2d,i} \forall i \in \mathbf{Q}_r \forall r \in r_{s2s},$$

hyper-pooling only if more attractive than stop-to-stop

$$U_{\mathbb{h},i} \geqslant U_{s2s,i} \forall i \in \mathbf{Q}_r \forall r \in r_{\mathbb{h}},$$

TUDelft

compensations

$$\lambda_p > \lambda_{d2d} > \lambda_{s2s} > \lambda_{\mathbb{h}}$$

JAGIELLONIAN UNIVERSITY In Kraków

	Problem	Algorithm	Summary and Conclusions
		000000000	
Algorithm			

Algorithm 1: Hyperpool - pseudo-code for the algorithm

Hyperpool	
inputs:	
Q	# trip requests
G	# road network graph
β's	<pre># parameters (behavioural, fares, discounts, etc.)</pre>
output:	
\mathbf{R}^*	# pooled rides
$\mathbf{R_p} \leftarrow \mathbf{Q}$	# Initialise with single rides
$\mathbf{R_{d2d}} \leftarrow ExMAS(\mathbf{R_p}, \beta's)$	<pre># compute door-to-door pooled rides with ExMAS</pre>
$\mathbf{R_{s2s}} \leftarrow \text{Stop-to-Stop}(\mathbf{R_{d2d}}, \beta's)$	<pre># identify stop-to-stop rides</pre>
$\mathbf{R}_{h} \leftarrow ExMAS'(\mathbf{R_{s2s}}, \beta$'s)	<pre># compute hyper-pooled rides with the modified ExMAS</pre>
$\mathbf{R} = \mathbf{R_p} \cup \mathbf{R_{d2d}} \cup \mathbf{R_{s2s}} \cup \mathbf{R_h}$	<pre># search space of rides of four-kinds</pre>
$\mathbf{R}^*\subseteq \mathbf{R}$	# match travellers to rides by solving the coverage problem
Result: R*	

	Algorithm	Results	
00000	000000000	●0000000	

Results

		Algorithm	Results	
000	00000	000000000	0000000	000
Amsterdam c	ase			

Albatross dataset: origin, destination and departure time for 241k trips within Amsterdam per working day.

a detailed OSM graph (fixed network-wide speed)

30 minute batch with 2000 trip requests (4000 requests/hour)

fares:

- 1.5€/km for private
- 25% discount for door-to-door ride-pooling,
- 66% for stop-to-stop and
- 75% for multi-stop pooling,

i.e. the fares λ 's of 1.5, 1.11, 0.5 and $0.375 \in$ /km respectively (PT fare in Amsterdam is ca. 0.3 \in /km, only 25% more expensive than the proposed hyper-pool rides)

minimise vehicle-hours in trip-ride assignment problem.

fleet not explicitly considered.

Concept	Problem	Algorithm	Results	Summary and Conclusions
000	00000	000000000	0000000	000
Results				
Illustrative 10-perso	n ride			
inustrative 10-perso	innue			

An illustrative example of a set of 10 travellers bundled into a single hyper-pooled ride (\mathbb{h}). Rows denote consecutive travellers. In columns, we report (dis)utilities, travel times, walk times and fares paid at the four levels of pooling: private (p), door-to-door (d2d), stop-to-stop (s2s), hyper-pool (\mathbb{h}); and public transport (PT) alternative.

	utility					travel tim	e [minutes]				walk	time				fare [€]	1			
id	p	d2d	s2s	h	PT	p	d2d	s2s	h	PT	p	d2d	s2s	h	PT	p	d2d	s2s	h	PT
776	-10.26	-9.78	-9.72	-7.42	-6.46	12.23	12.23	12.23	15.63	31.78	0.0	0.0	6.82	6.82	10.23	8.82	6.48	6.48	2.20	2.36
811	-19.33	-17.87	-19.15	-14.12	-15.09	20.65	20.65	20.65	26.88	50.83	0.0	0.0	10.35	10.35	9.73	14.87	10.93	10.93	3.72	3.59
1106	-18.97	-18.44	-18.42	-12.49	-14.52	20.12	20.12	20.12	26.88	39.75	0.0	0.0	1.82	1.82	6.78	14.49	10.66	10.66	3.62	2.93
1162	-14.09	-13.98	-14.06	-13.17	-15.69	13.93	13.93	12.43	15.63	33.67	0.0	0.0	2.23	2.23	6.92	10.04	7.38	3.41	2.51	2.61
1385	-15.53	-15.48	-14.66	-10.29	-12.53	16.82	16.82	16.82	18.90	43.87	0.0	0.0	12.77	12.77	12.43	12.11	8.91	8.91	3.03	2.98
1401	-16.06	-15.76	-15.98	-11.71	-16.66	16.27	16.27	16.27	18.90	47.48	0.0	0.0	9.68	9.68	18.67	11.72	8.62	8.62	2.93	2.81
1470	-13.52	-13.00	-12.98	-10.82	-11.60	14.05	14.05	12.43	13.68	35.22	0.0	0.0	13.15	13.15	14.38	10.12	7.44	3.44	2.53	2.31
1729	-12.82	-12.42	-12.42	-9.36	-13.17	12.82	12.82	12.82	13.68	35.23	0.0	0.0	4.37	4.37	13.93	9.23	6.79	6.79	2.31	2.34
1865	-3.08	-2.92	-2.89	-3.05	-3.98	3.63	3.63	3.48	3.68	18.38	0.0	0.0	9.92	9.92	12.65	2.62	1.93	0.89	0.66	1.36
1995	-3.84	-3.33	-3.60	-2.71	-2.92	4.72	4.72	3.48	3.68	15.28	0.0	0.0	7.65	7.65	9.55	3.40	2.50	1.16	0.85	1.36
total	-127.5	-122.98	-123.88	-95.64	-112.62	135.24	135.24	130.73	157.54	351.49	0.0	0.0	78.76	78.76	115.27	97.42	71.64	61.29	24.36	24.65

Nine requests of a total 65km length were served with a single 9.6km multi-stop ride. If served with private rides it generates 2.25 vehicle-hours, while it can be now served with only 0.44

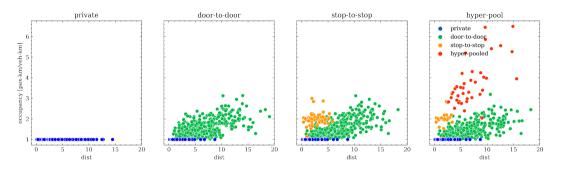
		Algorithm	Results	
000	00000	000000000	0000000	000
Results				
Solution and searc	h space			

Rides composition

Rides composition obtained when pooling 2000 trip requests at various pooling levels. Each row introduces a new level of pooling and columns denote the number of travellers assigned to rides of respective kind. The last column denotes the number of attractive rides in respective solutions.

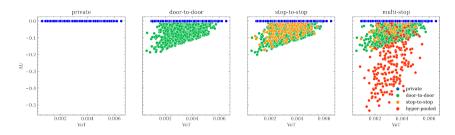
solution with		private	door-to-door	stop-to-stop	hyper-pooled	number of feasible rides
private	p	2000	0	0	0	2000
door-to-door pooled	$p \cup d2d$	655	1345	0	0	159 702
stop-to-stop pooled	$p \cup d2d \cup s2s$	645	1184	171	0	160 239
hyper-pooled	$p \cup d2d \cup s2s \cup \mathbb{h}$	651	1065	59	225	1 009 855

		Algorithm	Results	
000	00000	000000000	0000000	000
Results KPIs per traveller				

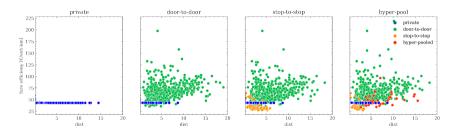

KPIs

Ride-pooling KPIs per traveller obtained for case of 30-minute batch with 2000 trips in Amsterdam at four consecutive levels of pooling.

solution	vehicle hours	(dis)utility €	pax in-vehicle hours	walk time	#rides	fare	fares per veh-hour	Average occupancy
private	0.137	-7.56	0.137	0.00	2000	5.92	43.24	1.00
door-to-door pooled	0.090	-7.31	0.181	0.00	159702	4.55	50.81	1.53
stop-to-stop pooled	0.088	-7.18	0.169	0.01	160239	4.35	49.43	1.56
hyper-pooled	0.086	-6.65	0.146	0.02	1009855	4.02	47.03	1.60


		Algorithm	Results	
000	00000	000000000	00000000	000
Results				
Occupancy				

Occupancy (y-axis) of rides obtained at respective levels of ride pooling scattered against ride length (x-axis). Each panel denotes a solution where new levels of pooling are introduced, dots represent individual rides and colours denote the pooling service kind.


		Algorithm	Results	
000	00000	000000000	00000000	000
Results				
Attractiveness for in	ndividuals			

Relative attractiveness (disutility reduction ΔU on y-axis as related to the private ride) obtained at various levels of pooling (consecutive panels) scattered against the value of time of respective travellers (x-axis). Each dot denotes now a single traveller and is coloured accordingly to the type of pooling service to which the traveller was assigned to.

		Algorithm	Results	
000	00000	000000000	0000000	000
Results				
Efficiency for the operation	ator			

Trip efficiency (fare per vehicle-kilometre on y-axis) varying with ride length (x-axis) for various ride types (colours) and pooling levels (panels). Each dot represents a single ride.

	Algorithm	Summary and Conclusions
		000

Summary and Conclusions

		Algorithm		Summary and Conclusions
000	00000	000000000	0000000	000
Hyper-pool Summary and conclusions				

- Our method yields occupancy levels not observed before for attractive ride-pooling.
- In our Amsterdam case-study we managed to pool over 220 travellers into 40 hyper-pooled rides of average occupancy 5.8 pax-h/veh-h.
- If or each traveller the discomfort induced by pooling is compensated by reduced fares.
- It offers a great potential for
 - travellers (whose disutility of travelling can be reduced),
 - (a) for policymakers (who contribute towards sustainability goals with increased occupancy) and
 - o for service providers (for whom the pooling cost-effectiveness remains greater than for private ride-hailing).
- The algorithms are publicly available and reproducible.
- Hyper-pool is applicable for real-size demand datasets and
- opens new opportunities for exploiting the limits of ride-pooling potential.

Concept OOO	Problem 00000	Results 00000000	Summary and Conclusions
Questions			

Thank you! Rafał Kucharski & Oded Cats¹

¹ This research was supported by the CriticalMaaS project (grant number 804469), which is financed by the ERC and Amsterdam Institute of Advanced Metropolitan Solutions.